Road to Java

From VB.NET

Written by:
Josip Medved <jmedved@jmedved.com>

Thanks to:
DIR <www.dir.hr>

0.01 2004-12-06



Contents

0] =110 o P 3
Elementary, dear Data............ooouniiiiii i 4
L= =Y (o] o 1S 4
S A AY S, .. a e e e e e e e e e e e e aaas 5
TREIE IS NO SWAP ...ttt ettt e s e e e e e e e e e e eeeeeeaeeeeeeeeeennnnnns 5
2= T T3S 6
ANY COMMEBNT? ...t e e e e e e e e e e e e e e e e e e e e e e e e e aaaas 6
(@] 0= = | (= 21 6
LOGIC IS TOGIC. .ttt e e e e e e e e e e e e e e e 7
= Lo = 0 0 L= = o 18] o o 1SS 8
LA = L L PP RPPPPI 8
FIP the SWILCH.....ee e 8
LAY = 10 o | SR PPRPPRR 9
LA 1= OO PRRRRPURPR 9
3o F P EPREERRRPP 10
Something to €nd With.........ooi e 10
0= S0 o J R RR 11



Foreword

This bunch of letters is made out of my personal need. For long | have been VB and
then VB.NET programmer with limited experience in C-like languages. But suddenly |
got myself in situation that requires Java. | took some books and started learning but
none of them was satisfactory. They all either treated me as an idiot or they treated
me as an expert and all | wanted is someone to tell me the difference (between
VB.NET 2003 and Java not between idiot and expert).

This script is intended for VB.NET non-beginners trying to understand Java. Some
things will be described in details but for some there is need for basic programming
knowledge. | will not waste my keyboard on some basic stuff like what are data types
or what is compiler.

There is hidden agenda also - to improve my English so don't get mad when you
stumble on weird looking words and tenses - just contact me and we'll see what to do
about that.

P.S. Since this script got to it's existence because of my own itch, there is no scope
defined. | will write for as long | feel like it and it will cover all things | think it should. If
you have itch too, you may contribute some text or just correct me.



Elementary, dear Data

For kickoff here is table of elementary VB.NET data types and their equivalent in
Java.

VB.NET Java
Boolean False or True 2 b boolean False or True -
Byte 0 to 255 1b byte -128 to 128 1b
Char 0 to 65,535 2 b char Unicode 0 to 2b
Unicode 2°-1
Date 0001-01-01 to 8 b Date class - -
9999-12-31
Decimal depends 16 b BigDecimal depends -
class
Double IEEE754 8 b double IEEE754 8b
Integer -2%" o 2%'-1 4 b int -2%" to 2%'-1 4b
Long -2% to 2%3-1 8 b long -2% to 2%3-1 8b
Object - - - - -
class
Short -2 to 251 2 b short -2'5 to 2'5-1 2b
Single IEEE754 4 b float IEEE754 4b
String class approx. 2G Unicode - String class approx. 2G Unicode -
characters characters
does not exist void - -

Biggest difference lays in way variables are declared:

Instead Dim x As Integer we use int x;. This is most difficult thing to get
adjusted to (along with semicolon on end of each line). Also note that Java types are
case sensitive (as whole language is) and Int x; is not same as int x;.
Forgetting this can lead to notorious bugs.

Those who didn't work in any C-like languages may notice void data type. This is
usually used as indication for function that returns nothing - we have Sub for that.

Initialization

All variables in class body default to same values as in VB.NET (O for integers, false
for booleans and so on). But variables defined in function defaults to random values
as in C/C++. Big difference here is compiler insisting on assigning default value. This
can be done similar to VB.NET:

int a = 23;
int b = 0x17;
int ¢ = 027;



Here we can see three ways of defining default values. In a case we assign simple
integer value to variable. In second example we can see that same value can be
defined in hexadecimal notation (&H17 in VB.NET). Third case shows octal value.
You can define octal numbers by using 0 as first number. In real life there is no or
very little need for it since octal numbers are very rare.

Star days

In .NET there is single System.DateTime date type for dealing with all problems. This
is not case in Java. There is java.util.Date class but most of functionality we are used
to have is deprecated and not to be used. To create date variable that will hold our
date proper way is to use java.util.Calendar class:

java.util.Calendar calendarVar =
java.util.Calendar.getInstance();

calendarVar.set (2004,12,6,0,0,0);

java.util.Date dateVar = calendarVar.getTime() ;

As you may see this is way too complicated for normal use (and don't forget to put
these 0's - current time is used if they are not there). Reason is internationalism
concept that wasn't there in Java so they patched it. There is danger lurking for VB
programmers in way of getting month from date also:

int monthIndex = cal.get(java.util.Calendar.MONTH) ;

It seems not too complicated but big surprise is that monthindex is 0 for January, 1
for February and so on. You read it right. Even months start from zero. This is too
much for me.

There is no swap

From the old VB days we had ByVal and ByRef. They had been misused through
history but sometimes you just had need for them. For example, swap routines could
be made really easy with them. In Java there is no swap. Language it self has
capability to transfer something ByRef but it is forbidden for programmer to do so.
Only proper way to return parameter is function. No more than one parameter is to
be returned. Remember this.



Basic

Any comment?

To make comments in VB.NET we used apostrophe character (') or Rem keyword. In
Java there are more options. First is to use /* and */ pair. All in between these
characters is considered to be remark. This is useful for making multi line comments.
We can also use // to comment remainder of row. This acts exactly as 'in VB.NET.
Last style is used to produce JavaDoc comments. It begins with /** and ends with */.
Things in between are considered to be part of documentation.

Operate me

Standard arithmetic operators are:

Operator VB.NET Java
Addition c=a+b c=a+ b;
Substraction c=a-> c =a - b;
Multiplication c=a*hb c=a * b;
Division c=a/b c=a/ b;
Integer division c=al\b c =a/ b;

make sure that both
variables are integers
Division remainder c = a Mod b c=as% b;
Power c=a’hb -

If we don't need another variable and we need to keep things short:

Operator VB.NET Java
Addition c += a c += a;
Substraction c -= a c -= a;
Multiplication c *= a c *= a;
Division c /= a c /= a;
Integer division c \= a c /= a;

make sure that both
variables are integers

Division remainder - c %= a;
Power - -

Incrementing or decrementing by one is special story:



Operator VB.NET Java

Incrementing c +=1 c++;
++c;
Substraction c -=1 c——;
——c;

Note that these are not all that Java or VB.NET can offer but they are most often
used.

Logic is logic

Relational operators create boolean result:

Operator VB.NET Java
Equivalent a=> a ==>b
Not equivalent a <>b al!l=5>o
Less than a <b a <b
Less than or equal a <=b a <=b
Greater than a>b a>b
Greater than or equal a>>n a >= b

Since all things are almost same, only problems can arise by forgetting correct
equivalence operators syntax.



Boss me around

What If

If is most basic instruction and one way to control program flow:

Form VB.NET Java
One liner If a = b Then x if (a==b) x();
Simple If a = b Then if (a==b) {

X x();
End If }
With else If a = b Then if (a==b) {
x x ()7
Else } else {
y vy ()
End If }
Worst case If a = b Then if (a==b) {
scenario % % () ;
ElseIf ¢ = d Then } else if (c==d) {
y v ()
Else } else {
z z ()7
End If }

You must notice () around operators. There is also possibility to leave out {} when
only one statement is used. Note that this is not recommended practice.
Flip the switch

Sometimes you need to do branching based on one variable. For that we have
Select Case in VB.NET and switch in Java.

Form VB.NET Java
Basic Select Case a switch (a) {
Case 1: x case 1: x(); break;
Case 2: y case 2: y(); break;
Case Else: z default: z(); break;

End Select }



Form VB.NET Java
Not so basic Select Case a -
Case 1, 2, 3: x
Case 4 To 10: y

Case Else: z

End Select

Here we have few hidden dangers. One of them is break; statement after each
branch. Without that statement, all cases would evaluate. While this seems pretty
stupid to me, it is standard in C-like languages. Also note that there is no equivalent
for second form of behavior. If you have such needs, you are stucked with if.

What for
Form VB.NET Java
Simple For i As Integer = 0 To 9
x (1)
Next

for (int i=0; i<=9; i++) {

x(1);

Double barrel
for (int 1=0, int J=0; 1<=9; i++,J++) {
X (1 r ] )5

}

While simple form is supported in both languages. Complicated form where we
increment two variables at time is supported only in Java. This is rarely needed but it
is nice to have. Also note that separator for if is semicolon (;), not comma (,). If you
accidentally use comma, you may find your self in trouble.

While
Form VB.NET Java
Basic While a = Db while (a==b) {
x x();
End While }

As you can see, thing are not that different. Notice that this is same as Do While ...
Loop statement in VB.NET but this form is used since it is closer in words.



Do

Form VB.NET Java
Basic Do do {
x x();
Loop While a = Db } while (a==b);
Opposite Do -
X

Loop Until a <> Db

Notice that there is no until form in Java but that can be countered with clever use of
not operator.

Something to end with

We got used to using Exit For, Exit While, Exit Do and similar statements. In Java
you've got single break statement to get you out of path. Also there is countinue
statement which will continue with next value:

for (int 1=0; i<10; i++) {
if (i%2==0) continue;
System.out.println(i);

}

Result of that will be:

O J 0w

This is one of rare things that | really miss in VB.NET.



Let's go
Standard starting point of all programs is main function in selectable class:

public class Hello {
public static void main(String[] args) {
Systemout.printin("Hello world!");
}

}
That same code in VB.NET would be:

Public Class Hello
Public Shared Sub Main ()
System.Console.WriteLine ("Hello world!"™)
End Sub
End Class

After we get used to using } as single replacement for whole bunch of our End
constructs and new way of declaring sub's only thing left is learning new
namespaces.



Recommended reading

Bruce ECKEL: Thinking in Java
Definitely one of best books ever. Can be find at www.bruceeckel.com. It is put
here because it is The Book for Java.

lan F. DARVIN: Java Cookbook
Can be used as fast lookup for Java patterns.

David FLANAGAN: Java Examples in a Nutshell
Lots of examples, most of them are only basics but it is useful as reference.

Steve HOLZNER: Eclipse
Pretty good book on Eclipse IDE.

Robert SIMMONS, Jr: Hardcore Java
Some useful implementation details.



